HSC 2021 : রসায়ন : অ্যাসাইনমেন্ট

দ্বিতীয় অ্যাসাইনমেন্ট
রসায়ন (২য় পত্র)
৪র্থ সপ্তাহ


(ক) চার্লস এর সূত্র : স্থির চাপে কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন $0°C$ হতে প্রতি ডিগ্রি সেলসিয়াস তাপমাত্রা পরিবর্তনের জন্য $0°C$ – এর আয়তনের  $\frac{1}{273}$ অংশ পরিবর্তিত হয়।

মনে করি $0°C$ তাপমাত্রায় কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন $= V_o$

চার্লস এর সূত্রানুযায়ী স্থির চাপে,
$1°C$ তাপমাত্রা বৃদ্ধিতে আয়তন $=V_o+\frac{V_o}{273}$

মনে করি স্থির চাপে ওই গ্যাসের 0°C তাপমাত্রায় আয়তন V

সুতরাং আমরা পাই, $V=V_o+\frac{V_o}{273}=V_o\left(1+\frac\theta{273}\right)$

পরম স্কেলে চার্লস এর সূত্র
সমীকরণ অনুসারে, $V=V_o\left(\frac{273+\theta}{273}\right)=\frac{V_oT}{273}$

এখানে T হচ্ছে পরম স্কেলে তাপমাত্রা এবং $T=\theta+273$

ধরা যাক,
$\frac{V_o}{273}=K=$ধ্রুবক

$\therefore V=kT$ বা, $V\;\alpha\;kT$

অর্থাৎ, নির্দিষ্ট চাপে একটি নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন তার পরম তাপমাত্রার সমানুপাতিক| এটিই পরম স্কেলে চার্লসের সূত্র।

কোনো তাপমাত্রা t°c এ ঐ গ্যাসের আয়তন V_t ধরে আমরা গাণিতিকভাবে পাই, $V_t=\left(V_o+\frac{V_o\times t}{273}\right)$

তখন –273°C এবং 273°C এ ঐ গ্যাসের আয়তন যথাক্রমে 0(শূন্য) এবং দ্বিগুণ (2V) হয়।

উইলিয়াম থনসন ( লর্ড কেলভিন ) গ্যাসের আয়তন (V) ও তাপমাত্রার হ্রাস-বৃদ্ধির ওপর সরলরৈখিক সম্পর্ককে ভিত্তি করে পরম তাপমাত্রার স্কেল (Absolute temperature scale) উদ্ভাবন করে।

পরম তাপমাত্রা স্কেল ও পরশূন্য তাপমাত্রাঃ পরম তাপমাত্রা বা কেলভিন স্কেলের 0(শূন্য) বিন্দুকে – 273.15°C সেলসিয়াস ও কেলভিন স্কেলে প্রতি ডিগ্রির দুরুত্ব সমান, বরফের গলনাঙ্ককে 273K (কেলভিন) ও পানির স্ফুটনাঙ্ককে 373K ধরা হয়েছে। কেলভিন বা পরম তাপমাত্রা স্কেলের সর্বনিম্ন তাপমাত্রা OK বা –273.15°Cকে পরম শূন্য তাপমাত্রা বলস হয়। কারণ এ তাপমাত্রার নিচে গ্যাসের আয়তনের মান ঋনাত্মক হতে হয়, যা বাস্তবে অসম্ভব। কেলভিন তাপমাত্রাকে ক্যাপিটাল ‘T’ এবং সেলসিয়াস তাপমাত্রার সাথে 273 করে কেলভিন তাপমাত্রা একক প্রকাশ করা হয়। সুতরাং TK = (273 + t°C)

বর্তমানে গ্যাসের আয়তন তাপমাত্রার সম্পর্ককে চার্লসের সূত্র নামে নিম্নরূপে বিবৃত করা হয় :
চার্লসের সূত্রঃ স্থির চাপে নিরদিষ্ট ভরের কোনাে গ্যাসের আয়তন এর প্রম তাপমাত্রা বা কেলভিন তাপমাত্রার সমানুপাতিক হবে। 

(খ) গ্যাসের আণবিক গতিত্বের স্বীকার্যগুলাে নিম্নরূপ :
১) গ্যাসের গঠন : যেকোনাে গ্যাস অসংখ্য ক্ষুদ্র কণিকা যেমন: পরমাণু অথবা অণুর সমন্বয়ে গঠিত। এসব কণিকা বা অণু খুব দ্রুতগতিতে সরলরখিক পথে ইতস্তত সম্ভবপর সবদিকে ছােটাছুটি করে।

২) গ্যাস অণুসমূহের আয়তন : গ্যাসের অণুগুলাের মােট আয়তন গ্যাস পাত্রের মােট আয়তনের তুলনায় নগণ্য। গ্যাসের মােট আয়তনের অধিকাংশ স্থানই খালি।

৩) গ্যাস অণুসমূহের মধ্যে আকর্ষণ ও বিকর্ষণ : গ্যাসের অণুগুলাের মধ্যে পারস্পরিক কোনাে আকর্ষণ বা বিকর্ষণ নেই; তারা পরস্পর প্রভাবমুক্ত স্বাধীন।

৪) আন্তঃআণবিক সংঘর্ষ ও প্রকৃতি : গ্যাসের অণুগুলাের মধ্যে পরস্পরের সাথে বা পাত্রের দেয়ালের সাথে সংঘর্ষ ঘটে; তখন ঐ সংঘর্ষগুলােও সম্পূর্ণ স্থিতিস্থাপক হয় অর্থাৎ তাদের গতিশক্তি অভ্যন্তরীন বা বা অন্য শক্তিতে রূপান্তরিত হয় না। নির্দিষ্ট তাপমাত্রায় (T), গ্যাসের অণুগুলাের মােট গতিশক্তি (Ek) স্থির থাকে।

আমরা জানি,
$1$ অনুর গতিশক্তি, $E_k=\frac{3}{2}kT=\frac{3}{2}\times1.38\times10^{-23}\times273=5.6511\times10^{-21}j$

$\therefore 1\;$ অনু $CO_2$ এর গতিশক্তি $=5.6511\times10^{-21}j$

গ) এখানে,
সিলিন্ডারের আয়তন, $V=1.0L$

$CO_2$ এর আয়তন, $V_1=400ml=0.4L$
$CO_2$ এর চাপ, $P_1=1atm$
$NO_2$ এর আয়তন, $V_2=500ml=0.5L$
$NO_2$ এর চাপ, $P_2=\frac {750}{760} atm=0.9868 atm$

$CH_4$ এর আয়তন, $V_3=600ml=0.6L$
$CH_4$ এর চাপ, $P_3=\frac {103.64}{101.325} atm=1.0228 atm$

মৌলের গ্যাস ধ্রুবক, $R=0.082L\;atm\;mol^{-1}k^{-1}$

তাহলে,
$CO_2$ এর আংশিক চাপ, $P_{CO_2}=\frac {P_1V_1}{V}=\frac{1\times0.4}{1}atm=0.4atm$

$NO_2$ এর আংশিক চাপ, $P_{NO_2}=\frac {P_2V_2}{V}=\frac{0.9684\times0.5}{1}atm=0.4934atm$

$NH_4$ এর আংশিক চাপ, $P_{CH_4}=\frac {P_3V_3}{V}=\frac{1.0228\times0.6}{1}atm=0.6137atm$

মিশ্রণের মোট চাপ,
$=P_m=P_{CO_2}+P_{NO_2}P_{CH_4}$
$=0.4+0.4934+0.6137$
$=1.507 atm$

$CO_2$ এর মৌল ভগ্নাংশ, $X_{CO_2}=\frac{P_{CO_2}}{P_m}=\frac{0.4}{1.507}=0.265$

$NO_2$ এর মৌল ভগ্নাংশ, $X_{NO_2}=\frac{P_{NO_2}}{P_m}=\frac{0.4934}{1.507}=0.327$

$CH_4$ এর মৌল ভগ্নাংশ, $X_{CH_4}=\frac{P_{CH_4}}{P_m}=\frac{0.6137}{1.507}=0.407$

(ঘ) মাত্রা :
মৌলের গ্যাস ধ্রুবক (R) এর তাৎপর্য :
মৌলের গ্যাস ধ্রুবক (R) এর তাৎপর্য বিভিন্ন পদের মাত্রা থেকে বের হয়ে যায়।
আমরা জানি, PV = nRT

$\therefore R=\frac{PV}{nT}\times P\times V\times\frac1n\times\frac1T$

=চাপ X আয়তন X 1 মৌল সংখ্যা X 1 কেলভিন
= বল দৈর্ঘ্য X দৈর্ঘ্য X 1 মৌল সংখ্যা X 1 কেলভিন
$\therefore R=$ বলXদৈর্ঘ্য মৌলXকেলভিন = কাজ (বা শক্তি) মৌল-1 কেলভিন-1

এ সম্পর্ক থেকে বোঝা যায় যে, চাপ স্থির রেখে এক মোল আদর্শ গ্যাসের তাপমাত্রা এক কেলভিন বাড়ালে গ্যাসের আয়তন বৃদ্ধিজনিত যে পরিমাণ কাজ হয়, তা গ্যাস ধ্রুবক R এর সমান। এটিই হলো R এর মাত্রা।


প্রথম অ্যাসাইনমেন্ট
রসায়ন (১ম পত্র)
১ম সপ্তাহ

পরমাণুর মডেল ও ইলেকট্রন বিন্যাস।

নির্দেশনা :
ক) পরমাণু মডেল বর্ণনা করা।
খ) কোয়ান্টাম সংখ্যাসমূহ বর্ণনা।
গ) কোয়ান্টাম সংখ্যা থেকে পরমাণুর বিভিন্ন শক্তিস্তরের ইলেকট্রন ধারণ ক্ষমতা নির্ণয়।
ঘ) পরমাণুর উপশক্তিস্তরে ইলেকট্রন বিন্যাসের নীতি ব্যাখ্যা করা।

নমুনা সমাধান

পরমাণুর মডেল ও ইলেকট্রন বিন্যাস

(ক) পরমাণু মডেল বর্ণনা : বোর পরমাণু মডেল রাদারফোর্ডের পরমাণু মডেলের ত্রুটির দিকে লক্ষ রেখে ১৯১৩ খ্রিস্টাব্দে নিলস বোর কোয়ান্টামতত্ত্বের ওপর ভিত্তি করে একটি মডেল প্রদান করেন। এ মডেলকে বোর পরমাণু মডেল বলা হয়। এ মডেলের তিনটি স্বীকার্য রয়েছে।

স্বীকার্যগুলো হলো -
১। শক্তিস্তর সম্পর্কিত ধারণা পরমাণুর : ইলেকট্রনগুলো নিউক্লিয়াসকে কেন্দ্র করে কতগুলো অনুমোদিত বৃত্তাকার কক্ষপথে ঘোরে। এ অনুমোদিত বৃত্তাকার কক্ষপথগুলোকে প্রধান শক্তিস্তর বলে। এ শক্তিস্তরে ইলেকট্রনগুলো ঘূর্ণনের সময় কোনো শক্তি শোষণ বা বিকিরণ করে না। প্রধান শক্তিস্তরকে ‘হ’ দ্বারা প্রকাশ করা হয়। n=1, 2, 3, 4...
n = 1 হলে, প্রধান শক্তিস্তর = K
n = 2 হলে, প্রধান শক্তিস্তর = L
n = 3 হলে, প্রধান শক্তিস্তর = M
n=4 হলে প্রধান শক্তিস্তর = N

২। কৌণিক ভরবেগ সম্পর্কিত ধারণা : একটি নির্দিষ্ট শক্তিস্তর ঘূর্ণমান ইলেকট্রনের কৌণিক ভরবেগ নির্দিষ্ট এবং তা $\frac h{2\mathrm\pi}$ এর গুণিতক।

সুতরাং, কৌণিক ভরবেগ, $mvr=\frac{nh}{2\mathrm\pi}$

এখানে,
m = ইলেকট্রনের ভর
V =গতিবেগ
r = শক্তিস্তরের ব্যাসার্ধ
n = প্রধান শক্তিস্তর
h = প্ল্যাংকের ধ্রুবক (6.63×10-34 JS)

৩। শক্তির বিকিরণ সম্পর্কিত ধারণা : বোর পরমাণুর মডেল অনুসারে ইলেকট্রন বিভিন্ন শক্তিস্তরে ঘূর্ণমান থাকার সময় কোনো শক্তি শোষণ বা বিকিরণ করে না। কিন্তু ইলেকট্রন এক শক্তিস্তর থেকে অন্য শক্তিস্তরে যাওয়ার সময় শক্তি শোষণ বা বিকিরণ করে। এ ক্ষেত্রে ইলেকট্রন যদি নিম্ন কক্ষপথ থেকে উচ্চ কক্ষপথে স্থানান্তরিত হয় তবে শক্তির শোষণ উচ্চ কক্ষপথে স্থানান্তরিত হয় তবে শক্তির শোষণ
ঘটবে, আর যদি উচ্চ কক্ষপথ থেকে নিম্ন কক্ষপথে নেমে আসে, তখন শক্তির বিকিরণ ঘটবে।

বোর পরমাণু মডেলেরও কিছু সীমাবদ্ধতা রয়েছে। এ মডেলের সীমাবদ্ধতাগুলো হলো—

১। বোর পরমাণু মডেল যেসব পরমাণু বা আয়নে একটিমাত্র ইলেকট্রন আছে, তাদের বর্ণালি ব্যাখ্যা করতে পারলেও একাধিক ইলেকট্রনবিশিষ্ট পরমাণুর বর্ণালি ব্যাখ্যা করতে পারে না।

২। এ মডেল অনুসারে ইলেকট্রন এক শক্তিস্তর থেকে অন্য শক্তিস্তরে যাওয়ার সময় বর্ণালিতে একটি করে রেখা তৈরি হওয়ার কথা, কিন্তু বাস্তবে উচ্চ শক্তিসম্পন্ন বর্ণালিবীক্ষণ যন্ত্রের সাহায্যে পরীক্ষা করলে দেখা যায়, প্রতিটি রেখা আবার একাধিক সূক্ষ্মরেখায় বিভক্ত হয়ে পড়ে। এ বিভক্ত হয়ে পড়ার ব্যাখ্যা বোরের মডেল দিতে পারেনি। 

৩। বোর পরমাণুর মডেলে বলা হয়েছে।ইলেকট্রনগুলো শুধু বৃত্তাকার কক্ষপথে ঘোরে। কিন্তু পরে প্রমাণিত হয়, ইলেকট্রন শুধু বৃত্তাকার কক্ষপথ নয়, উপবৃত্তাকার কক্ষপথেও ঘোরে।

৪। এ মডেল আপেক্ষিকতার তত্ত্ব মেনে চলে না। 

৫। এ মডেলের সাহায্যে জিম্যান ও স্টার্ক ফলাফল বর্ণনা করা যায় না।

রাদারফোর্ডের পরমাণু মডেল : ১৯১১ সালে বিজ্ঞানী আর্নেস্ট রাদারফোর্ড আলফা কণা বিচ্ছুরণ পরীক্ষার ওপর ভিত্তি করে পরমাণুর গঠন সম্পর্কে একটি মতবাদ প্রদান করেন। এ মতবাদ ‘রাদারফোর্ডের পরমাণু মডেল’ নামে পরিচিত।

রাদারফোর্ডের পরমাণু মডেল :
১। পরমাণুর কেন্দ্রস্থলে ধনাত্মক চার্জবিশিষ্ট একটি ভারী বস্তুকণা বিদ্যমান। এ ভারী বস্তুকণাকে পরমাণুর কেন্দ্র বা নিউক্লিয়াস বলে।

২। পরমাণুর মোট আয়তনের তুলনায় নিউক্লিয়ার্সের আয়তন অত্যন্ত ছোট। এবার একটু সহজে বুঝি, আমাদের দেহের মোট ওজনের তুলনায় দেহের প্রধান শ্বসন অঙ্গ ফুসফুসের ওজন কত? অবশ্যই অত্যন্ত ছোট হবে। তেমনিভাবে পরমাণুর নিউক্লিয়াসের আয়তন পরমাণুর মোট আয়তনের তুলনায় অত্যন্ত ছোট।

৩। পরমাণু সামগ্রিকভাবে চার্জনিরপেক্ষ। অর্থাৎ পরমাণুর সামগ্রিক চার্জশূন্য। আমরা একটি বস্তুকণাকে কখন চার্জনিরপেক্ষ বলতে পারি? যখন ওই বস্তুকণার মধ্যে সমানসংখ্যক ধনাত্মক ও ঋণাত্মক চার্জ বিদ্যমান থাকে। পরমাণুর ক্ষেত্রেও বিষয়টি একই। পরমাণুর নিউক্লিয়াসে যে কয়টি প্রোটন থাকে, নিউক্লিয়াসের বাইরেও সে কয়টি প্রোটন থাকে, নিউক্লিয়াসের বাইরেও সে কয়টি ইলেকট্রন থাকে। আর প্রোটন হলো ধনাত্মক চার্জবিশিষ্ট এবং ইলেকট্রন ইলেকট্রন হলো ঋণাত্মক চার্জবিশিষ্ট। যার ফলে সামগ্রিকভাবে পরমাণুর মোট চার্জ শূন্য হয়।

৪। সূর্যকে কেন্দ্র করে সৌরজগতের গ্রহগুলো যেমন ঘুরতে থাকে, তেমনি ঠিক একইভাবে পরমাণুর কেন্দ্রস্থলে অবস্থিত নিউক্লিয়াসকে কেন্দ্র করে পরমাণুর ইলেকট্রনগুলো ঘুরতে থাকে। যেহেতু পরমাণুর নিউক্লিয়াসকে কেন্দ্র করে ইলেকট্রনের ঘূর্ণন সৌরজগতের গ্রহগুলোর সঙ্গে সাদৃশ্যপূর্ণ, তাই এ মডেলকে সৌরমডেলও বলা হয়।

৫৷ ধনাত্মক চার্জবিশিষ্ট নিউক্লিয়াস ও ঋণাত্মক চার্জবিশিষ্ট ইলেকট্রনের মধ্যে একটি স্থির বৈদ্যুতিক আকর্ষণ বল বিদ্যমান। এ আকর্ষণ বল ও ঘূর্ণনের ফলে তৈরি কেন্দ্রবিমুখী বল সমান। ফলে পরমাণুটি স্থিতিশীল হয়। কিভাবে? তোমার প্রশ্ন থাকতে পারে। আমরা জানি, কোনো একটি বস্তুকণা যখন বৃত্তাকার পথে ঘুরতে থাকে তখন বাইরের দিকে একটি বল কার্যকর হয়, যাকে কেন্দ্রাবমুখা বল বলে। এই বলটির কারণে বস্তুকণা ছিটকে বাইরে চলে যেতে চায়। সুতরাং বস্তুকণাটিকে যদি বৃত্তাকার পথে ঘুরতে হয়, তাহলে বস্তুকণাটির কেন্দ্রের দিকে সমান পরিমাণ বিপরীতমুখী বল ক্রিয়াশীল থাকতে হবে। এ বলটিকে বলা হয় কেন্দ্রমুখী বল। অর্থাৎ বৃত্তাকার পথে ঘূর্ণায়ন বস্তুকণার কেন্দ্রমুখী বল ও কেন্দ্রবিমুখী বল সমান হলে এটি বৃত্তাকার পথে ঘুরতে পারবে। ঠিক তেমনিভাবে পরমাণুর ইলেকট্রন যদি নিউক্লিয়াসকে কেন্দ্র করে বৃত্তাকার পথে ঘুরতে চায়, তবে এ কেন্দ্রমুখী ও কেন্দ্রবিমুখী বলের মান সমান হতে হবে। তা না হলে পরমাণুর ইলেকট্রনটি বৃত্তাকার কক্ষপথ থেকে বাইরে ছিটকে যেতে চাইবে। ফলে পরমাণুর অস্তিত্ব বজায় থাকত না।

সব কাজেরই কিছু না কিছু সীমাবদ্ধতা থাকে। তেমনি রাদারফোর্ডের পরমাণুর মডেলেরও কিছু সীমাবদ্ধতা রয়েছে।

মডেলের সীমাবদ্ধতা—
১। এ মডেলের সাহায্যে পরমাণুর বর্ণালির কোনো ব্যাখ্যা পাওয়া যায় না।

২। এ মডেলে ইলেকট্রনের কক্ষপথের আকার ও আকৃতি সম্পর্কে কোনো ধারণা দেওয়া হয়নি।

৩। রাদারফোর্ডের পরমাণু মডেল শুধু একটি ইলেকট্রন কিভাবে পরমাণুর নিউক্লিয়াসকে কেন্দ্র করে ঘোরে, তা বর্ণনা করতে পারলেও একাধিক ইলেকট্রন কিভাবে পরমাণুর নিউক্লিয়াসকে কেন্দ্র করে ঘুরবে তা বর্ণনা করতে পারেনি।

৪। ইলেকট্রনের কৌণিক ভরবেগ সম্পর্কে কোনো ধারণা দেয়নি।

৫। রাদারফোর্ডের পরমাণু মডেলে পরমাণুর নিউক্লিয়াস ও ইলেকট্রনকে সৌরজগতে সূর্য ও গ্রহের সঙ্গে তুলনা করা হয়েছে। কিন্তু সৌরজগতের সূর্য ও গ্রহগুলো সাধারণ চার্জনিরপেক্ষ। অন্যদিকে পরমাণুর নিউক্লিয়াস ও ইলেকট্রন চার্জযুক্ত। তাই চার্জহীন বস্তুর সঙ্গে চার্জযুক্ত বস্তুর তুলনা করা ঠিক হয়নি।

(খ)
কোয়ান্টাম সংখ্যা সমূহের বর্ণনা : কোয়ান্টাম সংখ্যার সংজ্ঞা-
পরমাণুতে অবস্থিত ইলেকট্রনের শক্তিস্তরের আকার, আকৃতি, ত্রিমাতৃক বিন্যাস প্রকরণ এবং আবর্তনের দিক প্রকাশক সংখ্যা সমূহকে কোয়ান্টাম সংখ্যা বলে।

প্রকারভেদ : কোয়ান্টাম সংখ্যাকে ৪ ভাগে ভাগ করা হয়েছে।
১) প্রধান কোয়ান্টাম সংখ্যা,
২) সহকারী কোয়ান্টাম সংখ্যা,
৩) ম্যাগনেটিক কোয়ান্টাম সংখ্যা,
৪) স্পিন কোয়ান্টাম সংখ্যা,

১) প্রধান কোয়ান্টাম সংখ্যা : যে কোয়ান্টাম সংখ্যার সাহায্যে পরমাণুতে অবস্থিত ইলেকট্রনের শক্তিস্তরের আকার নির্নয় করা যায় তাকে প্রধাণ কোয়ান্টাম সংখ্যা বলে। প্রধান কোয়ান্টাম সংখ্যাকে n দ্বারা প্রকাশ করা হয়। যেমন : n=1,2,3,4,5 ইত্যাদি।

২) সহকারী কোয়ান্টাম সংখ্যা : যে কোয়ান্টাম সংখ্যার সাহায্যে শক্তিস্তরের আকৃতি নির্নয় করা যায়
তাকে সহকারী কোয়ান্টাম সংখ্যা বলে। একে I দ্বারা প্রকাশ করা হয়। I = 0 ~ (n-1). সহকারী কোয়ান্টাম সংখ্যা প্রধান কোয়ান্টাম সংখ্যার উপর নির্ভরশীল।

৩) ম্যাগনেটিক কোয়ান্টাম সংখ্যা : যে সকল সংখ্যার সাহায্যে ইলেকট্রনের কক্ষপথের ত্রিমাতৃক দিক বিন্যাস প্রকরন সমূহ প্রকাশ করা হয় তাকে ম্যাগনেটিক কোয়ান্টাম সংখ্যা বলে। একে m দ্বারা প্রকাশ করা হয়। m = 0 ~ । ম্যাগনেটিক কোয়ান্টাম সংখ্যা বলে। একে m দ্বারা প্রকাশ করা হয়। m = 0 ~ ।

৪) স্পিন কোয়ান্টাম সংখ্যা : নিজস্ব অক্ষের চারদিকে ইলেকট্রনের ঘুর্ননের দিক প্রকাশক সংখ্যা
সমূহকে স্পিন কোয়ান্টাম সংখ্যা বলে। একে S দ্বারা প্রকাশ করা হয়। s = +, -,

(গ) 
কোয়ান্টাম সংখ্যা থেকে পরমাণুর বিভিন্ন শক্তিস্তরের ইলেকট্রন ধারণ ক্ষমতা নির্ণয় :
HSC 21 : রসায়ন : ১ম সপ্তাহ : অ্যাসাইনমেন্ট

(ঘ)
পরমাণুর উপশক্তিস্তরের ইলেকট্রন বিন্যাসের নীতি :

আউফবাউ নীতি (aufbau principle) : মৌলের পরমাণুতে ইলেক্ট্রন বণ্টনের ক্ষেত্রে কোন শক্তিস্তরের কোন্ অরবিটালে ইলেকট্রন আগে প্রবেশ করে তা যে নিয়ম অনুসারে হয়ে থাকে ঐ নিয়মটিকে বলা হয়
আউফবাউ (aufbau) নীতি।

aufbau একটি জার্মান শব্দ। এর অর্থ হল building up বা নিচ থেকে উপরে তৈরির নিয়ম। অর্থাৎ একটি মৌলের পরমাণুতে ইলেকট্রন বিন্যাস গঠনের নিয়মই হচ্ছে Building up principle বা আউফবাউ নিয়ম।

এই নিয়ম অনুসারে মৌলের পরমাণুতে শক্তির উচ্চক্রম অনুসারে অরবিটাল গুলোতে ইলেকট্রন প্রবেশ করে। অর্থাৎ নিম্ন শক্তির অরবিটালে ইলেকট্রন আগে প্রবেশ করবে। এই নিয়ম অনুসারে প্রধান ও সহকারি কোয়ান্টাম সংখ্যার সম্মিলনে (n+1) রবিতে নির্ণীত হয়

3d এবং 4s এর মধ্যে

3d এর n = 3,  2
∴ n+ = 3+2 = 5

4s এর n = 4,  0
∴ n+ = 4+0 = 4

যেহেতু 4s এর ক্ষেত্রে n+ এর মান ছোট তাই এই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে।

4p এবং 5s এর মধ্যে

4p এর n = 4,  1
∴ n+ = 4+1 = 5

5s এর n = 5, 0
∴ n+ = 5+0 = 5

যেহেতু 4p এবং 5s এর উভয় ক্ষেত্রে n+ এর মান সমান তাই যে অরবিটালে n এর মান ছোট সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে। এজন্য 4p ইলেকট্রন দ্বারা আগে পূর্ণ হবে।

আইফবাউ নীতি অনুসারে অরবিটালসমূহের শক্তির ক্রম 1s < 2s < 2p <3s < 3p < 4s < 3d < 4p < 4d < 5p < 6s < 4f < 5d < 6p < 7s < 8s

হুন্ডের নিয়ম(Hund's rule) : অরবিটালে ইলেকট্রনের চুম্বক শক্তির মান-এর উপর ভিত্তি করে সমশক্তি সম্পন্ন অরবিটালসমূহে ইলেক্ট্রনের বিন্যাস এর নিয়ম হুন্ড কর্তৃক প্রস্তাবিত হয়।

সম শক্তিসম্পন্ন অরবিটালে ইলেকট্রন প্রথমে একটি একটি করে একমুখী স্পিনে প্রবেশ করে, অতঃপর প্রাপ্যতা অনুসারে অবশিষ্ট ইলেকট্রন বিপরীতমুখী স্পিনে প্রবেশ করে।

অর্থাৎ সমশক্তিসম্পন্ন অরবিটালে ইলেকট্রন পারত পক্ষে জোড়ায়-জোড়ায় প্রবেশ করে না। কারণ একই মুখী স্পিনের ইলেকট্রনদ্বয় পরস্পরকে বিকর্ষণ করে।

N-পরমাণুর ক্ষেত্রে হুন্ডের নীতি ব্যাখ্যা করা হলো : N- এর সর্ববহিস্থ P উপস্তরে 3টি ইলেকট্রন বিদ্যমান। P উপস্তর আবার সমশক্তিসম্পন্ন 2px, 2py, এবং 2pz এই 3টি অরবিটালে বিভক্ত। হুন্ডের নীতি অনুসারে বহিস্তরের 3টি ইলেকট্রন প্রথমে একটি একটি করে একমুখী স্পিনে যথাক্রমে 2px, 2py, এবং 2pz অরবিটালে প্রবেশ করবে।


আবার O পরমাণুর ক্ষেত্রে দেখা যায়, উহার সর্ববহিস্থ p উপাস্তরে 4টি ইলেকট্রন বিদ্যমান। p উপস্তর আবার সমশক্তি সম্পন্ন 2px, 2py, এবং 2pz অরবিটালে বিভক্ত।

হুন্ডের নীতি অনুসারে বহিস্তরের 4টি ইলেকট্রন এর মধ্যে হুন্ডের নীতি অনুসারে বহিস্তরের 4টি ইলেকট্রন এর মধ্যে 3টি ইলেকট্রন প্রথমে একটি একটি করে একমুখী স্পিনে যথাক্রমে 2px, 2py, এবং 2pz অরবিটালে গমন করবে।

K(19) এর ইলেকট্রন বিন্যাস :
$1s^2\;\;\;2s^2\;\;\;2p^6\;\;\;3s^2\;\;\;3p^6\;\;\;4s^1$

Cr(24) এর ইলেকট্রন বিন্যাস :
$1s^2\;\;\;2s^2\;\;\;2p^6\;\;\;3s^2\;\;\;3p^6\;\;\;4s^1\;\;\;3d^5$

1 Comments

  1. ক তে শুধু বোর এর মডেলের ব্যাখ্যা চেয়েছে।

    ReplyDelete
Post a Comment
Previous Post Next Post